DEMOSTRACIONES CON ENCANTO

DEMOSTRACIONES CON ENCANTO

UN VIAJE POR LAS MATEMATICAS ELEGANTES

ALSINA I CATALA, CLAUDI / NELSEN , ROGER B.

21,00 €
IVA incluido
En stock
Editorial:
EDICIONES SM
Año de edición:
2021
Materia
Educación
ISBN:
978-84-1318-779-2
Páginas:
292
Encuadernación:
Rústica
21,00 €
IVA incluido
En stock
Añadir a favoritos

Prólogo....................................................................11Introducción........................................................... 15Capítulo 1. Un jardín de enteros.................................................................... 211.1. Números figurados.................................................................211.2. Sumas de cuadrados, cubos y números triangulares............................................................ 261.3. Hay infinitos primos.................................................................... 291.4. Números de Fibonacci................................................................ 321.5. El teorema de Fermat.................................................................... 351.6. El teorema de Wilson.................................................................... 351.7. Números perfectos................................................................. 361.8. Desafíos.................................................................  37Capítulo 2. Números ilustres.................................................................... 392.1. La irracionalidad de 2............................................................................. 402.2. La irracionalidad de k cuando k no es un cuadrado perfecto.................................................. 412.3. La razón áurea...................................................................... 422.4. La circunferencia y p............................................................................. 452.5. La irracionalidad de p............................................................................. 472.6. El conde de Buffon y su aguja...................................................................... 482.7. El número e como límite..................................................................... 492.8. Una serie infinita para e............................................................................ 522.9. La irracionalidad de e............................................................................ 522.10. El problema de Steiner sobre el número e............................................................................ 532.11. La constante de Euler-Mascheroni........................................................... 532.12. Exponentes racionales e irracionales........................................................... 552.13. Desafíos................................................................ 56Capítulo 3. Puntos en el plano..................................................................... 593.1. La fórmula de Pick....................................................................... 593.2. Circunferencias y sumas de dos cuadrados.............................................................. 613.3. El teorema de Sylvester-Gallai.................................................................... 633.4. Partiendo en dos un conjunto de cien mil puntos................................................................... 643.5. Palomas y palomares............................................................. 653.6. Asignando números a los puntos del plano..................................................................... 663.7. Desafíos......................................................... 68Capítulo 4. El patio de recreo de los polígonos.............................................................. 694.1. Combinatoria poligonal............................................................... 694. 2. Dibujar un polígono conocidas las longitudes de sus lados................................................................ 724.3. Los teoremas de Maekawa y Kawasaki............................................................... 734.4. Cuadratura de polígonos............................................................... 754.5. Las estrellas del patio de los polígonos............................................................... 764.6. Los vigilantes de la galería de arte......................................................................... 784.7. Triangulaciones de polígonos convexos................................................................ 804.8. Cicloides, ciclógonos y cicloides poligonales............................................................. 834.9. Desafíos.................................................................. 85Capítulo 5. Un tesoro de teoremas sobre triángulos................................................................ 875.1. El teorema de Pitágoras................................................................. 875.2. Parentescos pitagóricos.............................................................. 885.3. El radio de la circunferencia inscrita en un triángulo rectángulo ............................................... 915.4. La generalización de Pappus del teorema de Pitágoras................................................................. 925.5. La circunferencia inscrita y la fórmula de Herón...................................................................... 935.6. La circunferencia circunscrita y la desigualdad triangular de Euler ................................................. 955.7. El triángulo órtico...................................................................... 965.8. La desigualdad de Erdo?s-Mordell................................................................... 975.9. El teorema de Steiner-Lehmus................................................................... 995.10. Las medianas de un triángulo............................................................... 1005.11. ¿Son obtusángulos la mayoría de los triángulos?............................................................ 1025.12. Desafíos................................................................ 103Capítulo 6. El embrujo del triángulo equilátero.............................................................. 1056.1. Teoremas de estilo pitagórico.............................................................. 1056.2. El punto de Fermat de un triángulo............................................................... 1086.3. El teorema de Viviani.................................................................. 1096.4. Una teselación triangular del plano y la desigualdad de Weitzenböck................................ 1106.5. El teorema de Napoleón.............................................................. 1126.6. El milagro de Morley.................................................................. 1136.7. El teorema de Van Schooten............................................................... 1156.8. El triángulo equilátero y la razón áurea..................................................................... 1166.9. Desafíos......................................................... 117Capítulo 7. El rincón de los cuadriláteros......................................................... 1197.1. Puntos medios en cuadriláteros......................................................... 1197. 2. Cuadriláteros cíclicos................................................................. 1217.3. Igualdades y desigualdades en un cuadrilátero.......................................................... 1237.4. Cuadriláteros tangenciales y bicéntricos............................................................ 1267.5. Los teoremas de Anne y Newton................................................................. 1277.6. Pitágoras con un paralelogramo y triángulos equiláteros ........................................................... 1297.7. Desafíos........................................................ 130Capítulo 8. Cuadrados por todas partes.................................................................... 1338.1. Teoremas con un cuadrado............................................................... 1338.2. Teoremas con dos cuadrados.............................................................. 1358.3. Teoremas con tres cuadrados.............................................................. 1408.4. Con cuatro y más cuadrados.............................................................. 1428.5. Cuadrados y matemáticas recreativas............................................................ 1448.6. Desafíos......................................................... 146Capítulo 9. Curvas a la vista .............................................................................  149 Cuadraturas de lúnulas ............................................................................. 1499.2. La asombrosa espiral de Arquímedes ............................................................................ 1559.3. La cuadratriz de Hipias................................................................. 1579.4. El cuchillo de zapatero y la bodega de sal....................................................................... 1589.5. Las cónicas según Quetelet y Dandelin ............................................................................ 1609.6. Triángulos de Arquímedes.........................................................1619.7. Hélices............................................................... 1649.8. Desafíos.............................................................. 165Capítulo 10. Aventuras con embaldosados y coloreados........................................................... 16910.1. Embaldosados y teselaciones del plano................................................................... 17010.2. Embaldosados con triángulos y cuadriláteros....................................................... 17410.3. Infinitas demostraciones del teorema de Pitágoras............................................................. 17710.4. La rana saltarina............................................................... 17910.5. Los siete frisos.................................................................... 18110.6. Demostraciones coloridas ....................................................................................... 18410.7. El dodecaedro y los caminos hamiltonianos.......................................................... 19210.8. Desafíos..................................................................................................................... 194Capítulo 11. Geometría en tres dimensiones...................................................... 19711.1. El teorema de Pitágoras en tres dimensiones....................................................... 19811.2. Particiones del espacio con planos........................................................................ 19911.3. Triángulos correspondientes en tres rectas.......................................................... 20111.4. Un cono que triseca ángulos ................................................................................. 20111.5. La intersección de tres superficies esféricas......................................................... 20211.6. La cuarta circunferencia......................................................................................... 20411.7. El área del triángulo esférico................................................................................. 20511.8. La fórmula de Euler para poliedros....................................................................... 20611.9. Caras y vértices de poliedros convexos................................................................. 20711.10. ¿Por qué se repiten las formas de algunas caras de los poliedros?..................... 20911.11. Euler y Descartes à la Pólya................................................................................... 21011.12. Cuadriculando cuadrados y cubiculando cubos................................................... 21111.13. Desafíos................................................................................................................... 213Capítulo 12. El patio de recreo de los polígonos................................................ 21512.1. Conjuntos numerables y no numerables.............................................................. 21512.2. El teorema de Cantor-Schröder-Bernstein............................................................ 21712.3. La desigualdad de Cauchy-Schwarz...................................................................... 21812.4. La desigualdad entre la media aritmética y la media geométrica....................... 22012.5. Dos perlas del origami............................................................................................ 22112.6. ¿Cómo dibujar una línea recta?.............................................................................. 22312.7. Algunas joyas de las ecuaciones funcionales....................................................... 22512.8. Desigualdades funcionales.................................................................................... 23012.9. La serie de Euler para p2/6..................................................................................... 23312.10. El producto de Wallis.............................................................................................. 23512.11. La aproximación de Stirling para n!...................................................................... 23612.12. Desafíos................................................................................................................... 238Soluciones a los desafíos........................................................................................... 241Capítulo 1........................................................................................................................... 241Capítulo 2........................................................................................................................... 243Capítulo 3........................................................................................................................... 247Capítulo 4........................................................................................................................... 249Capítulo 5........................................................................................................................... 251Capítulo 6........................................................................................................................... 255Capítulo 7........................................................................................................................... 258Capítulo 8........................................................................................................................... 261Capítulo 9........................................................................................................................... 262Capítulo 10......................................................................................................................... 265Capítulo 11.......................................................................................................................... 269Capítulo 12......................................................................................................................... 270Referencias bibliográficas......................................................................................... 273Índice por palabras...................................................................................................... 283Sobre los autores........................................................................................................... 289

Esta obra presenta una colección de demostraciones notables enmatemáticas elementales, sobre números, geometría, desigualdades,funciones, origami, teselaciones, de una elegancia excepcional,sucintas e ingeniosas. áA través de razonamientos sorprendentes o depotentes representaciones visuales, esperamos que esta selección dedemostraciones invite a los lectores a disfrutar de la belleza de lasmatemáticas.Además, cada capítulo concluye con desafíos al lector ?seplantean alrededor de ciento treinta?, a quien animamos a que busquepor sí mismo demostraciones con encanto y a compartir susdescubrimientos con otros.á

Artículos relacionados

  • EN CLASE SÍ SE JUEGA
    SÁNCHEZ MONTERO, MANU
    El niño es el objeto del proceso educativo y el juego es una de las principales actividades que realiza durante toda su etapa escolar. ¿Cómo no podríamos contemplar su utilización en el aula? El juego es un claro elemento del que debe valerse la pedagogía para usarlo en beneficio de la formación del niño y, por tanto, el juego debe ser aprovechado y desarrollado en la escuela. ...
    En stock

    21,00 €

  • BIE.AUTORREGULACION DIGITAL
    CÁNOVAS, GUILLERMO
    El mundo digital ha llegado para quedarse, y debemos educar a niños y adolescentes en el uso saludable de herramientas que van a utilizar a lo largo de toda su vida. Esta labor debe afrontarse tanto desde los centros escolares como desde las familias, Es necesario dotarlos de los mecanismos necesarios para desarrollar su sentido crítico, observar lo que está sucediendo con pers...
    En stock

    14,00 €

  • BIE.APRENDER CON REFERENTES FEMENINOS
    LÓPEZ NAVAJAS, ANA
    Transmitimos una visio´n desde las aulas en la que ma´s del 92% de los referentes nombrados son masculinos. Las implicaciones que tiene esta ausencia nos conciernen de igual manera a mujeres y a hombres. Suponen una gran pe´rdida cultural.Entre los fines de la educacio´n esta´ educar en igualdad de oportunidades y es de lo que vamos a tratar en este libro, de co´mo podemos incl...
    En stock

    18,00 €

  • EL HIJO INESPERADO
    VILANOVA, GEMMA
    Soy una madre con un hijo singular y único. Un niño diferente. Un hijo inesperado, como tantos otros, que más allá de la etiqueta del trastorno, la enfermedad o condición, se sale de lo que es considerado normal. Este libro es la crónica de los primeros diez años de vida de mi hijo Josep, diagnosticado con un trastorno del espectro autista. Un viaje que comienza con las primer...
    En stock

    17,90 €

  • METODOLOGIAS ACTIVAS PARA LA ENSEÑANZA UNIVERSITARIA
    ALONSO GARCIA, SANTIAGO / AZNAR DIAZ, INMACULADA /  
    Este libro pone el foco en el valor y aportación que hacen las redespara la inclusión social y Los métodos pedagógicos, o metodologías deenseñanza y aprendizaje, se encuentran actualmente en un momentoálgido. Hoy en día proliferan por las revistas científicas y las redes sociales métodos pedagógicos activos, en donde el estudiante asume el rol principal en su proceso de aprendi...
    En stock

    18,50 €

  • ANIMALES EN UN SOLO TRAZO
    HAYASHI, KENZO
    ¡Vamos a dibujar animales con una sola línea! Los más pequeños puedendominar habilidades motrices dibujando sus animales favoritos con esta técnica artística: el dibujo a línea continuo. Este libro contienemás de 50 dibujos de animales para que los pequeños observen, tracen,imiten y se atrevan a dibujar cualquier animal. Una vez que dominen la técnica podrían crear muchos de an...
    En stock

    12,00 €